273 research outputs found

    Morphological operators for very low bit rate video coding

    Get PDF
    This paper deals with the use of some morphological tools for video coding at very low bit rates. Rather than describing a complete coding algorithm, the purpose of this paper is to focus on morphological connected operators and segmentation tools that have proved to be attractive for compression.Peer ReviewedPostprint (published version

    B-Spline Snakes: A Flexible Tool for Parametric Contour Detection

    Get PDF
    We present a novel formulation for B-spline snakes that can be used as a tool for fast and intuitive contour outlining. We start with a theoretical argument in favor of splines in the traditional formulation by showing that the optimal, curvature-constrained snake is a cubic spline, irrespective of the form of the external energy field. Unfortunately, such regularized snakes suffer from slow convergence speed because of a large number of control points, as well as from difficulties in determining the weight factors associated to the internal energies of the curve. We therefore propose an alternative formulation in which the intrinsic scale of the spline model is adjusted a priori; this leads to a reduction of the number of parameters to be optimized and eliminates the need for internal energies (i.e., the regularization term). In other words, we are now controlling the elasticity of the spline implicitly and rather intuitively by varying the spacing between the spline knots. The theory is embedded into a multi-resolution formulation demonstrating improved stability in noisy image environments. Validation results are presented, comparing the traditional snake using internal energies and the proposed approach without internal energies, showing the similar performance of the latter. Several biomedical examples of applications are included to illustrate the versatility of the method

    Centered Pyramids

    Get PDF
    Quadtree-like pyramids have the advantage of resulting in a multiresolution representation where each pyramid node has four unambiguous parents. Such a centered topology guarantees a clearly defined up-projection of labels. This concept has been successfully and extensively used in applications of contour detection, object recognition and segmentation. Unfortunately, the quadtree-like type of pyramid has poor approximation powers because of the employed piecewise-constant image model. This paper deals with the construction of improved centered image pyramids in terms of general approximation functions. The advantages of the centered topology such a symmetry, consistent boundary conditions and accurate up-projection of labels are combined with a more faithful image representation at coarser pyramid levels. We start by introducing a general framework for the design of least squares pyramids using the standard filtering and decimation tools. We give the most general explicit formulas for the computation of the filter coefficients by any (well behaving) approximation function in both the continuous (L∞) (L _{ \infty } ) and the discrete (l∞) (l _{ \infty } ) norm. We then define centered pyramids and provide the filter coefficients for odd spline approximation functions. Finally, we compare the centered pyramid to the ordinary one and highlight some applications

    Multiresolution Approximation Using Shifted Splines

    Get PDF
    We consider the construction of least squares pyramids using shifted polynomial spline basis functions. We derive the pre- and post-filters as a function of the degree n and the shift parameter Δ. We show that the underlying projection operator is entirely specified by two transfer functions acting on the even and odd signal samples, respectively. We introduce a measure of shift-invariance and show that the most favorable configuration is obtained when the knots of the splines are centered with respect to the grid points (i.e., Δ=1/2 when n is odd, and Δ=0 when n is even). The worst case corresponds to the standard multiresolution setting where the spline spaces are nested

    Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents

    Get PDF
    Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging

    The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    Get PDF
    International audienceWe recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps

    A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles

    Get PDF
    Poly(MePEG2000cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to reach the rat central nervous system after intravenous injection. For insight into the transport of colloidal systems across the blood-brain barrier (BBB), we developed a relevant in vitro rat BBB model consisting of a coculture of rat brain endothelial cells (RBECs) and rat astrocytes. The RBECs used in our model displayed and retained structural characteristics of brain endothelial cells, such as expression of P-glycoprotein, occludin and ZO-1, and immunofluorescence studies showed the specific localization of occludin and ZO1. The high values of transendothelial electrical resistance and low permeability coefficients of marker molecules demonstrated the functionality of this model. The comparative passage of polyhexadecylcyanoacrylate and PEG-PHDCA nanoparticles through this model was investigated, showing a higher passage of PEGylated nanoparticles, presumably by endocytosis. This result was confirmed by confocal microscopy. Thanks to a good in vitro/in vivo correlation, this rat BBB model will help in understanding the mechanisms of nanoparticle translocation and in designing new types of colloidal carriers as brain delivery systems

    Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacological modulation

    Get PDF
    Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML
    • …
    corecore